Composition operators on Hardy spaces of rooted trees

P. Muthukumar

ISI Bangalore

Stat-Math Unit Symposium August 22-24, 2019.

HARDY SPACES

DEFINITION

For $p \in (0,\infty)$, the Hardy space H_p consists of holomorphic functions on $\mathbb D$ with

$$\|f\|_{p} := \sup_{r \in [0,1)} \left\{ rac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i heta})|^{p} \, d heta
ight\}^{rac{1}{p}}$$

is finite.

∃ >

DEFINITION

For $p \in (0,\infty)$, the Hardy space H_p consists of holomorphic functions on \mathbb{D} with

$$\|f\|_{p} := \sup_{r \in [0,1)} \left\{ rac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} \, d\theta
ight\}^{rac{1}{p}}$$

is finite.

• If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, then $||f||_2^2 = \sum_{n=0}^{\infty} |a_n|^2$.

• For $p \ge 1$, H_p is a Banach space and H_2 is a Hilbert space.

• If
$$0 , then $H_q \subsetneq H_p$.$$

DEFINITION

For $p \in (0,\infty)$, the Hardy space H_p consists of holomorphic functions on \mathbb{D} with

$$\|f\|_{p} := \sup_{r \in [0,1)} \left\{ rac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta
ight\}^{rac{1}{p}}$$

is finite.

• If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, then $||f||_2^2 = \sum_{n=0}^{\infty} |a_n|^2$.

- For $p \ge 1$, H_p is a Banach space and H_2 is a Hilbert space.
- If $0 , then <math>H_q \subsetneq H_p$.

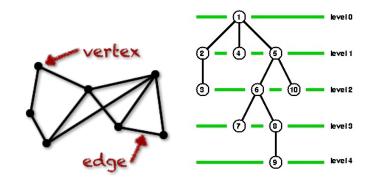
 $h_p =$ Harmonic Hardy space

 $H_p^g =$ generalized Hardy space .

In recent years, there has been a considerable interest in the study of function spaces on discrete set such as tree (more generally on graphs). For example,

- Lipschitz space of a tree (discrete analogue of Bloch space) [5]
- Weighted Lipschitz space of a tree [3],
- Iterated logarithmic Lipschitz space of a tree [2],
- Weighted Banach spaces of an infinite tree [4] and so on.

GRAPHS



DEFINITION (ROOTED TREE GRAPH)

A tree T is a locally finite connected graph without cycles. A rooted tree is a tree in which a special vertex (called root) is singled out.

Every tree graph can be thought of as a metric space under edge counting distance.

P. Muthukumar

Let T be a rooted tree with root o.

- |v| denotes the distance between o and v.
- For $n \in \mathbb{N}_0$, D_n denotes the set of all vertices v with |v| = n.
- c_n denotes the number of elements in D_n .

Let T be a rooted tree with root o.

- |v| denotes the distance between o and v.
- For $n \in \mathbb{N}_0$, D_n denotes the set of all vertices v with |v| = n.
- c_n denotes the number of elements in D_n .
- For example, if T is a (q+1)-homogeneous tree, then

$$c_n = \begin{cases} (q+1)q^{n-1} & \text{if } n \in \mathbb{N} \\ 1 & \text{if } n = 0. \end{cases}$$

• If T is a 2-homogeneous tree, then $c_n = 2$ for all $n \in \mathbb{N}$.

DISCRETE HARDY SPACE

For every $n \in \mathbb{N}$, we introduce

$$M_p(n,f) := \begin{cases} \left(\frac{1}{c_n} \sum_{\substack{|v|=n \\ |v|=n}} |f(v)|^p \right)^{\frac{1}{p}} & \text{if } p \in (0,\infty) \\ \max_{\substack{|v|=n}} |f(v)| & \text{if } p = \infty, \end{cases}$$

and $M_p(0, f) := |f(o)|$.

3

< 回 ト < 三 ト < 三 ト

DISCRETE HARDY SPACE

For every $n \in \mathbb{N}$, we introduce

$$M_p(n,f) := \begin{cases} \left(\frac{1}{c_n} \sum_{\substack{|v|=n \\ |v|=n}} |f(v)|^p \right)^{\frac{1}{p}} & \text{if } p \in (0,\infty) \\ \max_{\substack{|v|=n}} |f(v)| & \text{if } p = \infty, \end{cases}$$

and $M_p(0, f) := |f(o)|$.

DEFINITION

The discrete analogue of the generalized Hardy space (\mathbb{T}_p) defined by

$$\mathbb{T}_{p}:=\{f\colon T
ightarrow \mathbb{C}|\; \|f\|_{p}:=\sup_{n\in\mathbb{N}_{0}}M_{p}(n,f)<\infty\}.$$

$$\mathbb{T}_{p,0} := \{ f \in \mathbb{T}_p : \lim_{n \to \infty} M_p(n, f) = 0 \}$$

< A

- For $1 \le p \le \infty$, $\|\cdot\|_p$ induces a Banach space structure on the spaces \mathbb{T}_p and $\mathbb{T}_{p,0}$.
- As a direct consequence of Holder's inequality, for 0 , we have

 $M_p(n, f) \leq M_q(n, f)$ for all $n \in \mathbb{N}_0$.

▲圖▶ ▲ 圖▶ ▲ 圖▶

- For $1 \le p \le \infty$, $\|\cdot\|_p$ induces a Banach space structure on the spaces \mathbb{T}_p and $\mathbb{T}_{p,0}$.
- As a direct consequence of Holder's inequality, for 0 , we have

 $M_p(n, f) \leq M_q(n, f)$ for all $n \in \mathbb{N}_0$.

- For $0 , <math>\mathbb{T}_q \subseteq \mathbb{T}_p$ and $\mathbb{T}_{q,0} \subseteq \mathbb{T}_{p,0}$.
- These inclusions are proper if and only if {*c_n*} is a unbounded sequence.

くぼう くほう くほう

• For
$$x = (x_0, x_1, x_2, ...) \in I^{\infty}$$
, define $f_x : T \to \mathbb{C}$ by $f_x(v) = x_n$ if $|v| = n$. Then,

$$M_p(n,f) = |x_n|$$
 for all $n \in \mathbb{N}_0$ and $||f_x||_p = ||x||_\infty$.

3

<ロ> (日) (日) (日) (日) (日)

• For
$$x = (x_0, x_1, x_2, ...) \in I^{\infty}$$
, define $f_x : T \to \mathbb{C}$ by $f_x(v) = x_n$ if $|v| = n$. Then,

$$M_p(n,f) = |x_n|$$
 for all $n \in \mathbb{N}_0$ and $\|f_x\|_p = \|x\|_\infty$.

• The map $x \mapsto f_x$ is a linear isometry from I^{∞} to \mathbb{T}_p .

THEOREM

For $0 , the space <math>\mathbb{T}_p$ is not separable, whereas $\mathbb{T}_{p,0}$ is a separable space as the span of $\{\chi_v : v \in T\}$ is dense in $\mathbb{T}_{p,0}$.

GROWTH ESTIMATE

• If $f \in \mathbb{T}_p$, then for $v \in T$ with |v| = n, we have $\frac{1}{c_n} |f(v)|^p \le M_p^p(n, f) \le ||f||_p^p.$

3

< 回 ト < 三 ト < 三 ト

GROWTH ESTIMATE

• If
$$f \in \mathbb{T}_p$$
, then for $v \in T$ with $|v| = n$, we have

$$\frac{1}{c_n} |f(v)|^p \le M_p^p(n, f) \le \|f\|_p^p.$$

• Norm convergence in \mathbb{T}_p implies pointwise convergence:

If
$$\lim_{n\to\infty} \|f_n - f\| = 0$$
, then $\lim_{n\to\infty} f_n(v) = f(v)$ for each $v \in T$.

・ 何 ト ・ ヨ ト ・ ヨ ト

GROWTH ESTIMATE

• If
$$f \in \mathbb{T}_p$$
, then for $v \in T$ with $|v| = n$, we have

$$\frac{1}{c_n} |f(v)|^p \le M_p^p(n, f) \le \|f\|_p^p.$$

• Norm convergence in \mathbb{T}_p implies pointwise convergence:

If
$$\lim_{n\to\infty} \|f_n - f\| = 0$$
, then $\lim_{n\to\infty} f_n(v) = f(v)$ for each $v \in T$.

• Choose two vertices v_1 and v_2 such that $|v_1| = 1$ and $|v_2| = 2$. Take $f = \sqrt{c_1}\chi_{v_1}$ and $g = \sqrt{c_2}\chi_{v_2}$. Then,

$$||f||_2 = ||g||_2 = ||f + g||_2 = ||f - g||_2 = 1$$

and hence the parallelogram law

$$\|f + g\|_2^2 + \|f - g\|_2^2 = 2(\|f\|_2^2 + \|g\|_2^2)$$

is not satisfied. Therefore, \mathbb{T}_2 cannot be a Hilbert space under $\|.\|_2$.

DEFINITION

Let X be a linear space consisting of complex-valued functions defined on a set Ω and let ϕ be a self-map of Ω . The composition operator C_{ϕ} with symbol ϕ is defined as

$$C_{\phi}f = f \circ \phi$$
 for $f \in X$

and for a given complex valued function ψ defined on $\Omega,$ the multiplication operator with symbol ψ is defined by

$$M_{\psi}f = \psi f$$
 for $f \in X$.

- C_{ϕ} , M_{ψ} are linear maps (always).
- The class of these operators is not so narrow as it may look at a first glance.

• Consider the backward shift operator on the sequence space *I*² defined by

$$(x(0), x(1), x(2), \ldots) \mapsto (x(1), x(2), x(3), \ldots).$$

By viewing l^2 as square summable power series, this is a multiplication operator M_{ψ} induced by $\psi(z) = z$ or this can be viewed as a composition operator C_{ϕ} induced by $\phi(n) = n + 1$.

• Consider the backward shift operator on the sequence space *I*² defined by

$$(x(0), x(1), x(2), \ldots) \mapsto (x(1), x(2), x(3), \ldots).$$

By viewing l^2 as square summable power series, this is a multiplication operator M_{ψ} induced by $\psi(z) = z$ or this can be viewed as a composition operator C_{ϕ} induced by $\phi(n) = n + 1$.

 Consider the evaluation map on a function space (eg: C[0,1], dual of normed linear space, H^p, B,...)

$$ev_a(f) := f(a).$$

This is a composition operator C_{ϕ} induced by the constant function $\phi \equiv a$.

< 回 > < 三 > < 三 > .

Multiplication operators

Let X denotes \mathbb{T}_p or $\mathbb{T}_{p,0}$ with norm $\|\cdot\|_p$, where $1 \leq p \leq \infty$.

Theorem

Let M_{ψ} be multiplication operator on X defined on a homogeneous rooted tree T. Then,

- M_ψ is a bounded linear operator on X if and only if ψ is a bounded function on T. Moreover, ||M_ψ|| = ||ψ||_∞.
- M_{ψ} is a compact operator on X if and only if $\psi(v) \to 0$ as $|v| \to \infty$.
- M_{ψ} is an isometry on X if and only if $|\psi(v)| = 1$ for all $v \in T$.
- M_{ψ} is invertible on X if and only if $0 < m \le |\psi(v)| \le M < \infty$ for all $v \in T$.
- The spectrum of M_{ψ} is given below:

•
$$\sigma_e(M_\psi) = Range \text{ of } \psi = \psi(T);$$

 $(\mathbf{M}_{\psi}) = \psi(T).$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

C_{ϕ}	\mathbb{T}_{∞} $(\mathbb{T}_{\infty,0})$		$\mathbb{T}_{p} (\mathbb{T}_{p,0})$ on
		2—homogeneous trees	<i>k</i> -homogeneous trees
Bounded			
Norm			
Compact			
Isometry			
Invertible			

æ

<ロ> (日) (日) (日) (日) (日)

Composition operators on \mathbb{T}_∞

Theorem

- Every self map φ of T induces bounded composition operator on T_∞ with ||C_φ|| = 1.
- C_{ϕ} is compact on \mathbb{T}_{∞} if and only if ϕ is a bounded self map of T.
- C_{ϕ} is an isometry on \mathbb{T}_{∞} if and only if $\phi : T \to T$ is onto.
- The operator C_{ϕ} is invertible on \mathbb{T}_{∞} if and only if ϕ is bijective on T.

Composition operators on \mathbb{T}_∞

Theorem

- Every self map φ of T induces bounded composition operator on T_∞ with ||C_φ|| = 1.
- C_{ϕ} is compact on \mathbb{T}_{∞} if and only if ϕ is a bounded self map of T.
- C_{ϕ} is an isometry on \mathbb{T}_{∞} if and only if $\phi : T \to T$ is onto.
- The operator C_{ϕ} is invertible on \mathbb{T}_{∞} if and only if ϕ is bijective on T.

Theorem

- The composition operator C_{ϕ} is bounded on $\mathbb{T}_{\infty,0}$ if and only if $|\phi(v)| \to \infty$ as $|v| \to \infty$. Moreover, $\|C_{\phi}\| = 1$.
- There are no compact composition operators on $\mathbb{T}_{\infty,0}$.
- C_{ϕ} is an isometry on $\mathbb{T}_{\infty,0}$ if and only if $\phi : T \to T$ is onto and $|\phi(v)| \to \infty$ as $|v| \to \infty$.
- The operator C_{ϕ} is invertible on $\mathbb{T}_{\infty,0}$ if and only if ϕ is bijective on T and $|\phi(v)| \to \infty$ as $|v| \to \infty$.

Let T be a 2-homogeneous tree and $1 \le p < \infty$.

- For every self map ϕ of T, C_{ϕ} is bounded on \mathbb{T}_p .
- C_{ϕ} is compact on \mathbb{T}_{p} if and only if ϕ is a bounded self map of T.
- The operator C_{ϕ} is invertible on \mathbb{T}_p if and only if ϕ is bijective on T.

Let T be a 2-homogeneous tree and $1 \le p < \infty$.

- For every self map ϕ of T, C_{ϕ} is bounded on \mathbb{T}_p .
- C_{ϕ} is compact on \mathbb{T}_{p} if and only if ϕ is a bounded self map of T.
- The operator C_{ϕ} is invertible on \mathbb{T}_{p} if and only if ϕ is bijective on T.

Theorem

Let T be a 2-homogeneous tree and let $1 \le p < \infty$. Then C_{ϕ} is an isometry on \mathbb{T}_p if and only if the following properties hold:

•
$$\phi(o) = o$$

- 2 ϕ is onto
- **(a)** $|\phi(v)| = |\phi(w)|$ whenever |v| = |w|
- **1** If $\phi(w) \neq o$ for some $w \in T$, then ϕ is injective on $D_{|w|}$.

Let T be a 2-homogeneous tree with root o and let $D_n = \{a_n, b_n\}$ for each $n \in \mathbb{N}$ and ϕ be a self map of T, $1 \le p < \infty$.

- If $\phi(o) \neq o$, then $\|C_{\phi}\|^p = 2$.
- If $\phi(o) = o$, then any one of the following distinct cases must occur:
 - (A) Either $\phi \equiv o$ or for every $n \in \mathbb{N}$, $\phi(D_n) = D_m$ for some $m \in \mathbb{N}$ then $\|C_{\phi}\|^p = 1$.
 - (B) If ϕ maps exactly one element of D_n to o for each $n \in \mathbb{N}$ then $\|C_{\phi}\|^p = \frac{3}{2}$.
 - (C) Either there exist a n ∈ N such that φ(a_n) = φ(b_n) ≠ o or there exist a n ∈ N such that |φ(a_n)| and |φ(b_n)| are not equal and both are different from 0 then ||C_φ||^p = 2.

THEOREM

Let T be a 2-homogeneous tree with root o and let $D_n = \{a_n, b_n\}$ for each $n \in \mathbb{N}$ and ϕ be a self map of T, $1 \le p < \infty$.

- If $\phi(o) \neq o$, then $\|C_{\phi}\|^p = 2$.
- If $\phi(o) = o$, then any one of the following distinct cases must occur:
 - (A) Either $\phi \equiv o$ or for every $n \in \mathbb{N}$, $\phi(D_n) = D_m$ for some $m \in \mathbb{N}$ then $\|C_{\phi}\|^p = 1$.
 - (B) If ϕ maps exactly one element of D_n to o for each $n \in \mathbb{N}$ then $\|C_{\phi}\|^p = \frac{3}{2}$.
 - (C) Either there exist a n ∈ N such that φ(a_n) = φ(b_n) ≠ o or there exist a n ∈ N such that |φ(a_n)| and |φ(b_n)| are not equal and both are different from 0 then ||C_φ||^p = 2.

Theorem

Let T be a 2-homogeneous tree. Then, the composition operator C_{ϕ} is bounded on $\mathbb{T}_{p,0}$ if and only if $|\phi(v)| \to \infty$ as $|v| \to \infty$.

BOUNDED SELF MAP

Let ϕ be a self map of homogeneous rooted tree T.

- For n ∈ N₀ and w ∈ T, let N_φ(n, w) denote the number of pre-images of w for φ in |v| = n. That is N_φ(n, w) is the number of elements in {φ⁻¹(w)} ∩ D_n.
- Finally, for each $m, n \in \mathbb{N}_0$,

$$N_{m,n} := \max_{|w|=m} N_{\phi}(n,w).$$

Theorem

If T is a (q+1)-homogeneous tree with $q \ge 2$ and ϕ is a self map of T such that $\sup_{v \in T} |\phi(v)| = M$, then $\|C_{\phi}\|^{p} \le c_{M}$. Moreover, $\|C_{\phi}\|^{p} = c_{M}$ if and only if

$$\sup_{n\in\mathbb{N}_0}\frac{N_{M,n}}{c_n}=1.$$

Let T be a (q + 1)-homogeneous tree and $1 \le p < \infty$. Then C_{ϕ} is bounded on \mathbb{T}_p if and only if

$$\alpha = \sup_{n \in \mathbb{N}_0} \left\{ \frac{1}{c_n} \sum_{m=0}^{\infty} N_{m,n} c_m \right\} < \infty.$$

Moreover,
$$\|C_{\phi}\|^{p} = \alpha$$
.

Theorem

Let T be a (q + 1)-homogeneous tree and consider C_{ϕ} on \mathbb{T}_{p} , where $1 \leq p < \infty$, $q \geq 1$ and ϕ be an automorphism of T. Then we have (i) $\|C_{\phi}\| = 1$ if $\phi(o) = o$ (ii) $\|C_{\phi}\|^{p} = (q + 1)q^{|\phi(o)|-1}$ if $\phi(o) \neq o$.

ISOMETRY AND INVERTIBILITY

Theorem

Let T be a (q+1)-homogeneous tree with $q \ge 2$ and let $1 \le p < \infty$. Denote $\frac{c_k N_{k,n}}{c_n}$ by $\lambda_{k,n}$. Then, C_{ϕ} is an isometry on \mathbb{T}_p if and only if the following properties hold:

ISOMETRY AND INVERTIBILITY

Theorem

Let T be a (q+1)-homogeneous tree with $q \ge 2$ and let $1 \le p < \infty$. Denote $\frac{c_k N_{k,n}}{c_n}$ by $\lambda_{k,n}$. Then, C_{ϕ} is an isometry on \mathbb{T}_p if and only if the following properties hold:

• $\sup_{n \in \mathbb{N}_0} \lambda_{k,n} = 1$ for all $k \in \mathbb{N}_0$. In particular, ϕ is onto.

Theorem

Let T be a (q + 1)-homogeneous tree with $q \ge 2$, and $1 \le p < \infty$. C_{ϕ} is invertible on \mathbb{T}_p , if and only if ϕ is invertible and there exists an M > 0 such that $||\phi(v)| - |v|| \le M$ for all $v \in T$.

Compact composition operators

Theorem

- Every bounded self map φ of T induces compact composition operator on T_p.
- 2 Let T be a (q+1)-homogeneous tree. If C_{ϕ} is compact on \mathbb{T}_p , then

$$\sup_{n\in\mathbb{N}_0}\left\{q^{|w|-n}N_\phi(n,w)\right\}\to 0 \ \text{ as } |w|\to\infty.$$

COMPACT COMPOSITION OPERATORS

Theorem

- Every bounded self map φ of T induces compact composition operator on T_p.
- 2 Let T be a (q+1)-homogeneous tree. If C_{ϕ} is compact on \mathbb{T}_p , then

$$\sup_{n\in\mathbb{N}_0}\left\{q^{|w|-n}N_\phi(n,w)\right\}\to 0 \ \ as\ |w|\to\infty.$$

- **3** If C_{ϕ} is compact on \mathbb{T}_p , then $|v| |\phi(v)| \to \infty$ as $|v| \to \infty$.
- C_{ϕ} is a compact operator on \mathbb{T}_{p} whenever

$$rac{1}{c_n}\sum_{m=0}^\infty N_{m,n}c_m o 0$$
 as $n o\infty.$

There are no compact composition operators on $\mathbb{T}_{p,0}$.

EXAMPLES

• For each $n \in \mathbb{N}_0$, choose the vertex $v_n \in D_n$. Define $\phi_1(v) = v_n$ if |v| = n. Then, C_{ϕ_1} is not a bounded operator on \mathbb{T}_p .

EXAMPLES

۵

• For each $n \in \mathbb{N}_0$, choose the vertex $v_n \in D_n$. Define $\phi_1(v) = v_n$ if |v| = n. Then, C_{ϕ_1} is not a bounded operator on \mathbb{T}_p .

$$\phi_2(v) = \left\{egin{array}{cc} o & ext{if } v = o \ v^- & ext{otherwise} \end{array}
ight.$$

where v^- denotes the parent of v. Then, C_{ϕ_2} is bounded on \mathbb{T}_p which is not compact.

EXAMPLES

۵

• For each $n \in \mathbb{N}_0$, choose the vertex $v_n \in D_n$. Define $\phi_1(v) = v_n$ if |v| = n. Then, C_{ϕ_1} is not a bounded operator on \mathbb{T}_p .

$$\phi_2(v) = \left\{egin{array}{cc} o & ext{if } v = o \ v^- & ext{otherwise} \end{array}
ight.$$

where v^- denotes the parent of v. Then, C_{ϕ_2} is bounded on \mathbb{T}_p which is not compact.

For each n ∈ N₀, choose a vertex v_n such that |v_n| = n. Define a self map φ₃ by

$$\phi_3(v) = \left\{egin{array}{cc} v_k & ext{if } v = v_{2k} ext{ for some } k \in \mathbb{N} \ o & ext{otherwise.} \end{array}
ight.$$

Then, ϕ_3 is an unbounded self map of T which induces compact composition operators on \mathbb{T}_p .

P. Muthukumar

• For each $n \in \mathbb{N}$ which is not of the form n = 4k, $k \in \mathbb{N}_0$, choose $v_n \in T$ such that $|v_n| = n$. Define

$$\phi(v) = \begin{cases} v_{4k+2} & \text{if } v = v_{2k+1} \text{ for some } k \in \mathbb{N}_0, \\ v_{2k+1} & \text{if } v = v_{4k+2} \text{ for some } k \in \mathbb{N}, \\ v & \text{elsewhere.} \end{cases}$$

Clearly, ϕ is bijective on T. But C_{ϕ} is an unbounded operator on \mathbb{T}_p for every (q+1)-homogeneous trees with $q \geq 2$.

• For each $n \in \mathbb{N}$ which is not of the form n = 4k, $k \in \mathbb{N}_0$, choose $v_n \in T$ such that $|v_n| = n$. Define

$$\phi(v) = \begin{cases} v_{4k+2} & \text{if } v = v_{2k+1} \text{ for some } k \in \mathbb{N}_0, \\ v_{2k+1} & \text{if } v = v_{4k+2} \text{ for some } k \in \mathbb{N}, \\ v & \text{elsewhere.} \end{cases}$$

Clearly, ϕ is bijective on T. But C_{ϕ} is an unbounded operator on \mathbb{T}_p for every (q+1)-homogeneous trees with $q \geq 2$.

There are bijective self maps φ of T which induce a bounded composition operator C_φ on T_p over (q + 1)−homogeneous trees with q ≥ 2, but φ⁻¹ does not induce a bounded composition operator.

- As with the *I^p* and the *H_p* spaces, whether T_p is not isomorphic to T_q when p ≠ q? What can be said about the dual of T_p?
- **2** What can be said about the spectrum of C_{ϕ} ?

- As with the *I^p* and the *H_p* spaces, whether T_p is not isomorphic to T_q when p ≠ q? What can be said about the dual of T_p?
- **2** What can be said about the spectrum of C_{ϕ} ?
- Solution Necessary and sufficient conditions for C_φ to be compact operator on T_p over (q + 1)−homogeneous trees with q ≥ 2?
- What about bounded and compact composition operators on T_{p,0} over (q + 1)−homogeneous trees with q ≥ 2?

- P. Muthukumar and S. Ponnusamy, Discrete analogue of generalized Hardy spaces and multiplication operators on homogenous trees, Analysis and Mathematical Physics 7(2017), 267–283.
- P. Muthukumar and S. Ponnusamy, Composition operators on the discrete analogue of generalized Hardy space on homogenous trees, Bulletin of the Malaysian Mathematical Sciences Society 40 (2017), no. 4, 1801–1815.
- P. Muthukumar and S. Ponnusamy, Composition operators on Hardy spaces of the homogenous rooted trees, Monatshefte fur Mathematik (2019), 22 Pages.

References

- R. F. Allen, F. Colonna and G. R. Easley, Composition operators on the Lipschitz space of a tree, Mediterr. J. Math. 11(2014), 97–108.
- R. F. Allen, F. Colonna and G. R. Easley, *Multiplication operators on the iterated logarithmic Lipschitz spaces of a tree*, Mediterr. J. Math. 9(2012), 575–600.
- R. F. Allen, F. Colonna and G. R. Easley, Multiplication operators on the weighted Lipschitz space of a tree, J. Operator Theory 69(2013), 209–231.
- R. F. Allen and I. M. A. Craig, *Multiplication operators on weighted Banach spaces of a tree*, Bull. Korean Math. Soc. 54 (3), (2017), 747–761.
- Flavia Colonna and Glenn R. Easley, Multiplication Operators on the Lipschitz Space of a Tree, Integr. Equ. Oper. Theory 68(2010), 391–411.

THANK YOU

æ

イロト イヨト イヨト イヨト